
Chapter 2

Instructions: Language

of the Computer

Chapter 2 — Instructions: Language of the Computer — 2

Instruction Set

� The repertoire of instructions of a
computer

� Different computers have different
instruction sets
� But with many aspects in common

� Early computers had very simple
instruction sets
� Simplified implementation

� Many modern computers also have simple
instruction sets

§
2
.1

 In
tro

d
u
c
tio

n

Chapter 2 — Instructions: Language of the Computer — 3

The MIPS Instruction Set

� Used as the example throughout the book

� Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

� Large share of embedded core market

� Applications in consumer electronics, network/storage
equipment, cameras, printers, …

� Typical of many modern ISAs

Chapter 2 — Instructions: Language of the Computer — 4

Arithmetic Operations

� Add and subtract, three operands

� Two sources and one destination

add a, b, c # a gets b + c

� All arithmetic operations have this form

� Design Principle 1: Simplicity favours
regularity

� Regularity makes implementation simpler

� Simplicity enables higher performance at
lower cost

§
2
.2

 O
p
e
ra

tio
n
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 5

Arithmetic Example

� C code:

f = (g + h) - (i + j);

� Compiled MIPS code:

add t0, g, h # temp t0 = g + h
add t1, i, j # temp t1 = i + j
sub f, t0, t1 # f = t0 - t1

Chapter 2 — Instructions: Language of the Computer — 6

Register Operands

� Arithmetic instructions use register
operands

� MIPS has a 32 × 32-bit register file
� Use for frequently accessed data

� Numbered 0 to 31

� 32-bit data called a “word”

� Assembler names
� $t0, $t1, …, $t9 for temporary values

� $s0, $s1, …, $s7 for saved variables

� Design Principle 2: Smaller is faster
� c.f. main memory: millions of locations

§
2
.3

 O
p
e
ra

n
d
s
 o

f th
e
 C

o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 7

Register Operand Example

� C code:

f = (g + h) - (i + j);

� f, …, j in $s0, …, $s4

� Compiled MIPS code:

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

Chapter 2 — Instructions: Language of the Computer — 8

Memory Operands

� Main memory used for composite data
� Arrays, structures, dynamic data

� To apply arithmetic operations
� Load values from memory into registers
� Store result from register to memory

� Memory is byte addressed
� Each address identifies an 8-bit byte

� Words are aligned in memory
� Address must be a multiple of 4

� MIPS is Big Endian
� Most-significant byte at least address of a word
� c.f. Little Endian: least-significant byte at least address

Chapter 2 — Instructions: Language of the Computer — 9

Memory Operand Example 1

� C code:

g = h + A[8];

� g in $s1, h in $s2, base address of A in $s3

� Compiled MIPS code:

� Index 8 requires offset of 32

� 4 bytes per word

lw $t0, 32($s3) # load word
add $s1, $s2, $t0

offset base register

Chapter 2 — Instructions: Language of the Computer — 10

Memory Operand Example 2

� C code:

A[12] = h + A[8];

� h in $s2, base address of A in $s3

� Compiled MIPS code:

� Index 8 requires offset of 32

lw $t0, 32($s3) # load word
add $t0, $s2, $t0
sw $t0, 48($s3) # store word

Chapter 2 — Instructions: Language of the Computer — 11

Registers vs. Memory

� Registers are faster to access than
memory

� Operating on memory data requires loads
and stores
� More instructions to be executed

� Compiler must use registers for variables
as much as possible
� Only spill to memory for less frequently used

variables

� Register optimization is important!

Chapter 2 — Instructions: Language of the Computer — 12

Immediate Operands

� Constant data specified in an instruction

addi $s3, $s3, 4

� No subtract immediate instruction

� Just use a negative constant

addi $s2, $s1, -1

� Design Principle 3: Make the common
case fast

� Small constants are common

� Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 13

The Constant Zero

� MIPS register 0 ($zero) is the constant 0

� Cannot be overwritten

� Useful for common operations

� E.g., move between registers

add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 14

Unsigned Binary Integers

� Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++=

−

−

−

−
L

� Range: 0 to +2n – 1

� Example
� 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

� Using 32 bits

� 0 to +4,294,967,295

§
2
.4

 S
ig

n
e
d
 a

n
d
 U

n
s
ig

n
e
d
 N

u
m

b
e
rs

Chapter 2 — Instructions: Language of the Computer — 15

2s-Complement Signed Integers

� Given an n-bit number

0
0

1
1

2n
2n

1n
1n 2x2x2x2xx ++++−=

−

−

−

−
L

� Range: –2n – 1 to +2n – 1 – 1

� Example
� 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

� Using 32 bits

� –2,147,483,648 to +2,147,483,647

Chapter 2 — Instructions: Language of the Computer — 16

2s-Complement Signed Integers

� Bit 31 is sign bit
� 1 for negative numbers

� 0 for non-negative numbers

� –(–2n – 1) can’t be represented

� Non-negative numbers have the same unsigned
and 2s-complement representation

� Some specific numbers
� 0: 0000 0000 … 0000

� –1: 1111 1111 … 1111

� Most-negative: 1000 0000 … 0000

� Most-positive: 0111 1111 … 1111

Chapter 2 — Instructions: Language of the Computer — 17

Signed Negation

� Complement and add 1

� Complement means 1 → 0, 0 → 1

x1x

11111...111xx 2

−=+

−==+

� Example: negate +2

� +2 = 0000 0000 … 00102

� –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

Chapter 2 — Instructions: Language of the Computer — 18

Sign Extension

� Representing a number using more bits
� Preserve the numeric value

� In MIPS instruction set
� addi: extend immediate value

� lb, lh: extend loaded byte/halfword

� beq, bne: extend the displacement

� Replicate the sign bit to the left
� c.f. unsigned values: extend with 0s

� Examples: 8-bit to 16-bit
� +2: 0000 0010 => 0000 0000 0000 0010

� –2: 1111 1110 => 1111 1111 1111 1110

Chapter 2 — Instructions: Language of the Computer — 19

Representing Instructions

� Instructions are encoded in binary

� Called machine code

� MIPS instructions

� Encoded as 32-bit instruction words

� Small number of formats encoding operation code
(opcode), register numbers, …

� Regularity!

� Register numbers

� $t0 – $t7 are reg’s 8 – 15

� $t8 – $t9 are reg’s 24 – 25

� $s0 – $s7 are reg’s 16 – 23

§
2
.5

 R
e
p
re

s
e
n
tin

g
 In

s
tru

c
tio

n
s
 in

 th
e
 C

o
m

p
u
te

r

Chapter 2 — Instructions: Language of the Computer — 20

MIPS R-format Instructions

� Instruction fields

� op: operation code (opcode)

� rs: first source register number

� rt: second source register number

� rd: destination register number

� shamt: shift amount (00000 for now)

� funct: function code (extends opcode)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 21

R-format Example

add $t0, $s1, $s2

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

000000 10001 10010 01000 00000 100000

000000100011001001000000001000002 = 0232402016

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 22

Hexadecimal

� Base 16
� Compact representation of bit strings

� 4 bits per hex digit

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

� Example: eca8 6420
� 1110 1100 1010 1000 0110 0100 0010 0000

Chapter 2 — Instructions: Language of the Computer — 23

MIPS I-format Instructions

� Immediate arithmetic and load/store instructions
� rt: destination or source register number

� Constant: –215 to +215 – 1

� Address: offset added to base address in rs

� Design Principle 4: Good design demands good
compromises
� Different formats complicate decoding, but allow 32-bit

instructions uniformly

� Keep formats as similar as possible

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

Machine Code

� What is the machine code of the following
instruction:

� sub $t0, t1, $t2

� What is the assembly language statement
to this machine instruction:

� 00af802016

Chapter 2 — Instructions: Language of the Computer — 24

Chapter 2 — Instructions: Language of the Computer — 26

Logical Operations

� Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sll

Shift right >> >> srl

Bitwise AND & & and, andi

Bitwise OR | | or, ori

Bitwise NOT ~ ~ nor

� Useful for extracting and inserting
groups of bits in a word

§
2
.6

 L
o
g
ic

a
l O

p
e
ra

tio
n
s

Chapter 2 — Instructions: Language of the Computer — 27

Shift Operations

� shamt: how many positions to shift

� Shift left logical
� Shift left and fill with 0 bits

� sll by i bits multiplies by 2i

� Shift right logical
� Shift right and fill with 0 bits

� srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 6 bits5 bits 5 bits 5 bits 5 bits

Chapter 2 — Instructions: Language of the Computer — 28

AND Operations

� Useful to mask bits in a word

� Select some bits, clear others to 0

and $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0000 1100 0000 0000$t0

Chapter 2 — Instructions: Language of the Computer — 29

OR Operations

� Useful to include bits in a word

� Set some bits to 1, leave others unchanged

or $t0, $t1, $t2

0000 0000 0000 0000 0000 1101 1100 0000

0000 0000 0000 0000 0011 1100 0000 0000

$t2

$t1

0000 0000 0000 0000 0011 1101 1100 0000$t0

Chapter 2 — Instructions: Language of the Computer — 30

NOT Operations

� Useful to invert bits in a word

� Change 0 to 1, and 1 to 0

� MIPS has NOR 3-operand instruction

� a NOR b == NOT (a OR b)

nor $t0, $t1, $zero

0000 0000 0000 0000 0011 1100 0000 0000$t1

1111 1111 1111 1111 1100 0011 1111 1111$t0

Register 0: always
read as zero

Chapter 2 — Instructions: Language of the Computer — 31

Conditional Operations

� Branch to a labeled instruction if a
condition is true
� Otherwise, continue sequentially

� beq rs, rt, L1
� if (rs == rt) branch to instruction labeled L1;

� bne rs, rt, L1
� if (rs != rt) branch to instruction labeled L1;

� j L1
� unconditional jump to instruction labeled L1

§
2
.7

 In
s
tru

c
tio

n
s
 fo

r M
a
k
in

g
 D

e
c
is

io
n
s

Chapter 2 — Instructions: Language of the Computer — 32

Compiling If Statements

� C code:

if (i==j) f = g+h;
else f = g-h;

� f, g, … in $s0, $s1, …

� Compiled MIPS code:

bne $s3, $s4, Else
add $s0, $s1, $s2
j Exit

Else: sub $s0, $s1, $s2
Exit: …

Assembler calculates addresses

Chapter 2 — Instructions: Language of the Computer — 33

Compiling Loop Statements

� C code:

while (save[i] == k) i += 1;

� i in $s3, k in $s5, address of save in $s6

� Compiled MIPS code:

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit: …

Chapter 2 — Instructions: Language of the Computer — 35

More Conditional Operations

� Set result to 1 if a condition is true

� Otherwise, set to 0

� slt rd, rs, rt

� if (rs < rt) rd = 1; else rd = 0;

� slti rt, rs, constant

� if (rs < constant) rt = 1; else rt = 0;

� Use in combination with beq, bne
slt $t0, $s1, $s2 # if ($s1 < $s2)
bne $t0, $zero, L # branch to L

Chapter 2 — Instructions: Language of the Computer — 36

Branch Instruction Design

� Why not blt, bge, etc?

� Hardware for <, ≥, … slower than =, ≠

� Combining with branch involves more work
per instruction, requiring a slower clock

� All instructions penalized!

� beq and bne are the common case

� This is a good design compromise

Chapter 2 — Instructions: Language of the Computer — 37

Signed vs. Unsigned

� Signed comparison: slt, slti

� Unsigned comparison: sltu, sltui

� Example

� $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

� $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

� slt $t0, $s0, $s1 # signed

� –1 < +1 ⇒ $t0 = 1

� sltu $t0, $s0, $s1 # unsigned

� +4,294,967,295 > +1 ⇒ $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 38

Procedure Calling

� Steps required

1. Place parameters in registers

2. Transfer control to procedure

3. Acquire storage for procedure

4. Perform procedure’s operations

5. Place result in register for caller

6. Return to place of call

§
2
.8

 S
u
p
p
o
rtin

g
 P

ro
c
e
d
u
re

s
 in

 C
o
m

p
u
te

r H
a
rd

w
a
re

Chapter 2 — Instructions: Language of the Computer — 39

Register Usage

� $a0 – $a3: arguments (reg’s 4 – 7)

� $v0, $v1: result values (reg’s 2 and 3)

� $t0 – $t9: temporaries
� Can be overwritten by callee

� $s0 – $s7: saved
� Must be saved/restored by callee

� $gp: global pointer for static data (reg 28)

� $sp: stack pointer (reg 29)

� $fp: frame pointer (reg 30)

� $ra: return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 40

Procedure Call Instructions

� Procedure call: jump and link

jal ProcedureLabel

� Address of following instruction put in $ra

� Jumps to target address

� Procedure return: jump register

jr $ra

� Copies $ra to program counter

� Can also be used for computed jumps

� e.g., for case/switch statements

Chapter 2 — Instructions: Language of the Computer — 41

Leaf Procedure Example

� C code:

int leaf_example (int g, h, i, j)
{ int f;

f = (g + h) - (i + j);
return f;

}

� Arguments g, …, j in $a0, …, $a3

� f in $s0 (hence, need to save $s0 on stack)

� Result in $v0

Chapter 2 — Instructions: Language of the Computer — 42

Leaf Procedure Example

� MIPS code:
leaf_example:

addi $sp, $sp, -4
sw $s0, 0($sp)
add $t0, $a0, $a1
add $t1, $a2, $a3
sub $s0, $t0, $t1
add $v0, $s0, $zero
lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Save $s0 on stack

Procedure body

Restore $s0

Result

Return

Chapter 2 — Instructions: Language of the Computer — 46

Local Data on the Stack

� Local data allocated by callee
� e.g., C automatic variables

� Procedure frame (activation record)
� Used by some compilers to manage stack storage

Chapter 2 — Instructions: Language of the Computer — 47

Memory Layout

� Text: program code

� Static data: global
variables
� e.g., static variables in C,

constant arrays and strings

� $gp initialized to address
allowing ±offsets into this
segment

� Dynamic data: heap
� E.g., malloc in C, new in

Java

� Stack: automatic storage

Chapter 2 — Instructions: Language of the Computer — 48

Character Data

� Byte-encoded character sets

� ASCII: 128 characters

� 95 graphic, 33 control

� Latin-1: 256 characters

� ASCII, +96 more graphic characters

� Unicode: 32-bit character set

� Used in Java, C++ wide characters, …

� Most of the world’s alphabets, plus symbols

§
2
.9

 C
o
m

m
u
n
ic

a
tin

g
 w

ith
 P

e
o
p
le

Chapter 2 — Instructions: Language of the Computer — 49

Byte/Halfword Operations

� Could use bitwise operations

� MIPS byte/halfword load/store

� String processing is a common case

lb rt, offset(rs) lh rt, offset(rs)

� Sign extend to 32 bits in rt

lbu rt, offset(rs) lhu rt, offset(rs)

� Zero extend to 32 bits in rt

sb rt, offset(rs) sh rt, offset(rs)

� Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 50

String Copy Example

� C code (naïve):

� Null-terminated string

void strcpy (char x[], char y[])
{ int i;

i = 0;
while ((x[i]=y[i])!='\0')

i += 1;
}

� Addresses of x, y in $a0, $a1

� i in $s0

Chapter 2 — Instructions: Language of the Computer — 51

String Copy Example

� MIPS code:
strcpy:

addi $sp, $sp, -4 # adjust stack for 1 item
sw $s0, 0($sp) # save $s0
add $s0, $zero, $zero # i = 0

L1: add $t1, $s0, $a1 # addr of y[i] in $t1
lbu $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # addr of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # exit loop if y[i] == 0
addi $s0, $s0, 1 # i = i + 1
j L1 # next iteration of loop

L2: lw $s0, 0($sp) # restore saved $s0
addi $sp, $sp, 4 # pop 1 item from stack
jr $ra # and return

Chapter 2 — Instructions: Language of the Computer — 52

0000 0000 0111 1101 0000 0000 0000 0000

32-bit Constants

� Most constants are small

� 16-bit immediate is sufficient

� For the occasional 32-bit constant

lui rt, constant

� Copies 16-bit constant to left 16 bits of rt

� Clears right 16 bits of rt to 0

lui $s0, 61

0000 0000 0111 1101 0000 1001 0000 0000ori $s0, $s0, 2304

§
2
.1

0
 M

IP
S

 A
d
d
re

s
s
in

g
 fo

r 3
2
-B

it Im
m

e
d
ia

te
s
 a

n
d
 A

d
d
re

s
s
e
s

Chapter 2 — Instructions: Language of the Computer — 53

Branch Addressing

� Branch instructions specify

� Opcode, two registers, target address

� Most branch targets are near branch

� Forward or backward

op rs rt constant or address

6 bits 5 bits 5 bits 16 bits

� PC-relative addressing

� Target address = PC + offset × 4

� PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 54

Jump Addressing

� Jump (j and jal) targets could be
anywhere in text segment

� Encode full address in instruction

op address

6 bits 26 bits

� (Pseudo)Direct jump addressing

� Target address = PC31…28 : (address × 4)

Chapter 2 — Instructions: Language of the Computer — 55

Target Addressing Example

� Loop code from earlier example

� Assume Loop at location 80000

Loop: sll $t1, $s3, 2 80000 0 0 19 9 2 0

add $t1, $t1, $s6 80004 0 9 22 9 0 32

lw $t0, 0($t1) 80008 35 9 8 0

bne $t0, $s5, Exit 80012 5 8 21 2

addi $s3, $s3, 1 80016 8 19 19 1

j Loop 80020 2 20000

Exit: … 80024

Chapter 2 — Instructions: Language of the Computer — 56

Branching Far Away

� If branch target is too far to encode with
16-bit offset, assembler rewrites the code

� Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: …

Chapter 2 — Instructions: Language of the Computer — 57

Addressing Mode Summary

Chapter 2 — Instructions: Language of the Computer — 60

Translation and Startup

Many compilers produce
object modules directly

Static linking

§
2
.1

2
 T

ra
n
s
la

tin
g
 a

n
d
 S

ta
rtin

g
 a

 P
ro

g
ra

m

Chapter 2 — Instructions: Language of the Computer — 92

Concluding Remarks

� Design principles
1. Simplicity favors regularity

2. Smaller is faster

3. Make the common case fast

4. Good design demands good compromises

� Layers of software/hardware
� Compiler, assembler, hardware

� MIPS: typical of RISC ISAs
� c.f. x86

§
2
.1

9
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

REVISION

Chapter 2 — Instructions: Language of the Computer — 94

95

Logical Operators

� Logical operators

� Allows for forming more complex conditions

� Combines simple conditions

� Java logical operators

� && (conditional AND)

� || (conditional OR)

� & (boolean logical AND)

� | (boolean logical inclusive OR)

� ^ (boolean logical exclusive OR)

� ! (logical NOT)

96

Logical Operators (Cont.)

� Conditional AND (&&) Operator

� Consider the following if statement

� if (gender == FEMALE && age >= 65)

� ++seniorFemales;

� Combined condition is true

� if and only if both simple conditions are true

� Combined condition is false

� if either or both of the simple conditions are false

97

&&&&&&&& (conditional AND) operator truth table.

expression1 expression2 expression1 &&&&&&&& expression2

falsefalsefalsefalse falsefalsefalsefalse FFFFalsealsealsealse

falsefalsefalsefalse truetruetruetrue FFFFalsealsealsealse

truetruetruetrue falsefalsefalsefalse FFFFalsealsealsealse

truetruetruetrue truetruetruetrue TTTTruerueruerue

98

Logical Operators (Cont.)

� Conditional OR (||) Operator

� Consider the following if statement
� if ((semesterAverage >= 90) || (finalExam >= 90))

� System.out.println(“Student grade is A”);

� Combined condition is true

� if either or both of the simple condition are true

� Combined condition is false

� if both of the simple conditions are false

99

|||||||| (conditional OR) operator truth table.

expression1 expression2 expression1 |||||||| expression2

falsefalsefalsefalse falsefalsefalsefalse falsefalsefalsefalse

falsefalsefalsefalse truetruetruetrue truetruetruetrue

truetruetruetrue falsefalsefalsefalse truetruetruetrue

truetruetruetrue truetruetruetrue truetruetruetrue

100

Logical Operators (Cont.)

� Short-Circuit Evaluation of Complex
Conditions

� Parts of an expression containing && or ||
operators are evaluated only until it is known
whether the condition is true or false

� E.g., (gender == FEMALE) && (age >= 65)

� Stops immediately if gender is not equal to FEMALE

101

Common Programming Error

� In expressions using operator &&, a condition-
we will call this the dependent condition-may
require another condition to be true for the
evaluation of the dependent condition to be
meaningful. In this case, the dependent
condition should be placed after the other
condition, or an error might occur. For
example, in the expression (i != 0) && (10
/ i == 2), the second condition must appear
after the first condition, or a divide-by-zero
error might occur.

102

Logical Operators (Cont.)

� Boolean Logical AND (&) Operator

� Works identically to &&

� Except & always evaluate both operands

� Boolean Logical OR (|) Operator

� Works identidally to ||

� Except | always evaluate both operands

103

Logical Operators (Cont.)

� Boolean Logical Exclusive OR (^)

� One of its operands is true and the other is
false

� Evaluates to true

� Both operands are true or both are false

� Evaluates to false

� Logical Negation (!) Operator

� Unary operator

104

^̂̂̂ (boolean logical exclusive OR) operator truth table.

expression1 expression2 expression1 ^̂̂̂ expression2

falsefalsefalsefalse falsefalsefalsefalse falsefalsefalsefalse

falsefalsefalsefalse truetruetruetrue truetruetruetrue

truetruetruetrue falsefalsefalsefalse truetruetruetrue

truetruetruetrue truetruetruetrue falsefalsefalsefalse

105

(logical negation, or logical NOT) operator truth table.

expression !!!!expression

falsefalsefalsefalse truetruetruetrue

truetruetruetrue falsefalsefalsefalse

